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FOREWORD

The prediction of wave characteristics in shallow water is of
great importance along much of the Gulf coast of the United States,
a3 well as for many inland water areas (as Lake Okeechobee, Florida).
This has been difficult in the past as the effect of the shallow
bottom is considerable, particularly in reducing the hneight from
what would be expected by use of the deep water prediction methods.

This report presente a method for predicting the properties of
waves gencrated in shallow water, obtained by a combination of the
relationships for (deep water) ocean wave generation devised by
Sverdrup and Munk and revised by Bretschneider, with the theory of
wave energy lossges in shallow water devised by Putnam anmd Johnson
and revised by Bretschneider and Reid.

This report was prepared at the Agriculture & Mechanical College
of Texas in pursuance of Contract DA-49-055-eng-18 with the Bsach
Brosion 3Board, which provides in part for research and investigation

of the properties of waves in shkallow water. The author, C. I.. Bretschneider,
is a R=zearch Engji.ser at the institution,

Views and conclusions stated in the report are not necessarily
those of the Beach Erosion Board.

This rerort is published under authority of Public Law 166, 79th
Congrass, approved July 31, 1945.
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LIST OF SYMBOLS
propogational speed of a wave
wave group velocity
mean water depth
depth of water at end of Fetch
bottom friction factor (dimensionless)
fetch length of wind
acceleration of gravity
wave height (vertical distance from trough to crest)
deep water significant wave height
equivalent deep water significant wave height
wave shoaling factor = H/Ho' from Tables by Wiegel (7)
wave length (horizontal dstance between crests)

tottom slope, vertical change per horizontal distance
in direction of wave travel

permeability coefficient, ft2
time

wave period (time interval between passage of successive
crests at & iixed poini)

wind speed

horizontal distance in direction of wave travel

increment of horizontal distance of wave travel or fetch le

differential symbol

3.1116

kinematic viscosity of fluid

bottom friction dissipation function

percelation dissipation function

v
a3

gth
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GENERATION OF WIND WAVES OVER A SHALLOW BOTTOM
BY

Charles L. Bretschneider
The Agricultural and Mechanical College of Texas

Abstract. A numerical method is presented in this report for
determining the generationm of wind waves ovsr & shallow boticm,
taking bottom friction and percolation in the permeable sea bottom into
account. To date as far as the author knows, there has baen no single
theoretical develorment for determining the actual growth of waves gen-
erated by winds blowing over relatively shallow water. The numerical
method presented in this report is essentially that of successive
approximations wherein #ave energy is added due to wind stress and sub-
tracted due to bottom friction and percolation. This 1s done by making
use of the deep water forecasting relationships originally developed
by Sverdrup and Munk (6)# and revised by Bretschneider (2) for deter-
mining the energy added due to wind stress. The amount of wave energy
loss due ©o bottom friction and percolation is determined from the
relationships developaed by Bretschneider and Reid (2). The resultant

wave heights and periods are obtained by combining the above relationships

by rumerical methods.

The basic assumptions applicable to the development of the deep
water wave generation relationships (2) as well as the development cf
the relationships for bottom frictlon loss (4) and percolation loss (5)
apply to the development in this report. For a detailed discussion of

these basic assumptions, the reader is referred to the list of references

at the end of this report.

Empirical data on wind generated waves in shallow water obtained
irom bne Gull of Mexlco will bs przsented in 2 eeparate technieal report
at a later date. Although there are insufficient wave data to date to
verify completely all relationships presented in this report, it is
bclicved that the methed will nrave satisfactory once sufficient wave
data become avallable to enable accurate evaluation of the constants.

Introduction. The prediction of wave heights and periods was
practically an unknown art prior to World War II. In planning large
scale amphibious landings during the war, it was a major concern to
have advance information on wave conditions. This problem waes first
attacked by Sverdrup and Munk (6) who combined ocbserved wave data with
the classical equations of hydrodynamics to develop ths semi-empirical
sslationships which govern deep water wave generation and decay. These
were subsequently revised by Arthur (1) as additional wave vbservations
were collectsd, and again hy Breischneider (2).

# MNumbers in parentheses refer to 1ist at end of rsport.
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Using the above mentioned relationships it is possible to forscast
or kindcast deep water wind waves and swell. The general procedure becomes

relatively simple, once the necessary meteorological information 1s availaria.

The problem of forecasting or hindcasting wind waves in shallow or
intermediate water depths, however, is more complex than that of deep
wa’er wind waves, since the water depth and type of bottom linits the
rave of growth of the waves. The predicticn of wind waves generated in
shaliow water is indeed a problem in the Gulf of Mexico. The approach

given in this report is a first attempt at developing a method for
oredicting such waves.

In many casses, such as storms generating waves off the ccntinental
shelf in the Gulf of Mexico, the waves may originally generate as deep
water waves. As the waves continue to advance shoreward (under the same
wind system (further development may be in the shallow water, where the
water depth is equal to or less than one-half the wave length. Further
generation shoreward will continue until the rate at which the wind is
adding energy to the wavea is equal to the rate at which energy is lost
from the waves by bottom friction and percolation in the permeable sea
bottom. This is known as the steady state condition 4t that particular
depth. Furthermore, if the waves continue to advance upslope (under the
same wind system) a greater amount of energy will be lost due to bottom
friction and percolation in the permeable sea bottom than is gained
through wind stress. This will result in an actual attenuatiorn in wave
heigat, even though the original wind system remains constant over the
area of question.

Storm waves generated by strong winds over deep water may be of
considerable magnitude, and the resulting swell will advance for hundreds
of :iiles shoreward. As tha suell advances over & shallow botiom, a
considerable amount of wave energy may be iost due to bottom friction and
percolation in a permeable sea bottom. Putnam and Johmson (L) have de-
veloped o dinsipation functicn for beottom friction and Puluam (5) presents

a dissipation function for percolation in a permeable sea bottom.

Using the above mentioned dissipatinn Minetinne, Rretschnoider ond
Reid (3) have obtained a number of solutions and present a number of
nomographs for determining the change in wave height (or the change in
wave energy) due to bottom fricticn, percolation and refraction, for
swell traveling over a shallow bottom. Consequently an independent
method (2) exists by which it is possible to determine the deep water wave
energy during any stage of generation as a function of wind speed, wind
duration and fetch length., Also an independent method (3) exists by which
it is possible to determine the wave energy loss due to bottom friction
and percolation in a permeable sea bottom. To date as far as the author
knows, there haa been no single theoretical d evelopment for determining
the resultant of the above mentioned effects. Because of the number of
variables involved a direct mathematical investigation of the problems of
wave generation over a shallow bottom would be very complicated.
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The method of obtaining relationships for the genera*tizsn cof wind
waves in shallow water vy use of numerical metheds follows.

Case 1: Generation of Wind Waves Over a Botitom of Constant veoth.

If d/T° < 2.5 ft/sec? then the waves effectively "Feel bottom" ara
the depth and botton conditions enter as additional factors with respect

to the heights and period of waves which can be generated., The effect of

frictional dissipation of energy at the boitom for such waves 1limits the

rate cf wave generation and also places an upper limit on the wave heights
which can be gencrated by a given wind speed and fetch length.

The following expression for the reduction in height of waves tra- y
raction is

veling over an impermeable bottom of constant uepth without refracti
obtained from reference (3J.

-1

-

where H = the final significani height at x,

(1)

"
—

original significant height at x = Xy

j o}
-
{]]

Ax = x - x9, the horizontal distance of wave travel in feet,

friction factor (dimensionless), a characteristic of the bottom,

e}
]

T = wave period in seconds

' -4
K, - [:(tanh 2 14) (1,, by L_) (2)

a dimensionless snoaiing tacior, given as 1/lly" in 4abler by Wiegel (7)

3
Py = 6l 772 r £s —] . sec.t ft.-2, (3)
3 g2 | sinnh 2 wa/L _]

-

depth of wster in feet

B T (tan 27wd/L), wave length in feet

2T
acceleration of gravity in feet_/sec.g

Q.
"

L

e

Equations 1, 2 and 3 are based on considerations of waves of small
steepness and therefore represent only an appgoximation for waves near the
maximum steepness. The quantity (@¢/K.) (d/ )2 versus d/T? is presented

graphically in Figure 2,

Figure 1, the Fetch Graph for deep water wave generation, in effect
represents the generation of wave energy in deep water as a function of _E.z_
U
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and tll/F, wherens equation 1 represents the dissipation of wave energy

dué %o tottom friction. Figure 1 and equaiion 1 were combined by a nu-
merical method of successive approximation to obtain relationships for

the generation of waves over an impermeable tat tom of constant depth.

The procedure was as follows, Figure 1 was used o gencrate the waves
over an increment of fetch, Ax, then equation 1 was used to determine

the actual wave height at the end of Ax, taking energy loss due to bottom
friction into account. Using the new wave height determined by equation 1,
an equivalent deep water fetch length was determined from Figure 1. Then
a new fetch length, equal to the above equivalent d2ep water fetch length
plus an increment Ax was use? to determine a new deep water wave height
and period. Equation 1 again wss used to determine the wave height at the
end of the second section. The wave period for each section A x used in
equation 1 was taken as the average of the wave period at the end of the
equivalent deep water fetch length and the end of the increment Ax, and
was determined from Figure 1. The numerical process of succdssive approx-
imations, for z given value of U and d, was carried to the point where
the values of H remained constant, that is the steady sta‘e condition
for the generation of wind waves over an impermeable bottom of constant

depth.

The above method of determining the shallow water generation was
applied to 16 conditions, of a range in wind speed from 25 to 120 miles
per hour, and depths from 10 to 200 feet for f = 0,01, Each set of com-
putations involved from 7 to 17 increments of Ax.

Using the steady state conditions, dimensionless relationships of
gH/U2 and gT/U versus gd/U2 for f .01 were developed. Data of wind waves
generated in shallow water of Lake Okeechobee presented in other reports
(8, 9, 10) indicate that the steady state wave height corresponds best
with a bottom frictior factor of f « .0l. The observed wave periods,
however, were slightly higher than the computed wave period as determined
by the above method. This is to be e xpected,since the assumption of
energy partition between the wave height and the wave velocity is not
necessarily the come in shallaw water as in deep water. Consequently the
above (first) computations represent only the first approximation. The
relationship of gT/U versus gd/U2 was revised to fit the observed wave
Aatas snd the second approximation of gH/U2 versus gd/02 determined by
using the above period relationships instzad of the deep water wave period
relationship siven by Figure 1. The revised computations showed that
corrections of about -2 percent at gd/U2 « .0l and -1 percent at gd/U2
= 0.1 were required for the corresponding gH/'J2 values, The above correction
is small, for in shallow water the rate at which energy is dissipated
by bottom friction becomes less and less dependent on the wave period. In
fact for d/T° 3 0.1, the dissipation of wave energy by bat tom friction
becomes dependent entirely on the wave height, water depth, and bottom

friction factor.

Figure 3 shows the generation curves fer a bottom of constant depth
?or Brigd speeds of 25, 50, and 100 miles per hour, and bottom friction factor

[ P
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Using the generation curves of Figure 3, Figures 4 and 5 were
developed. Flgu e L presents the generation of wave height in dimensicnless
form as gH/U2 versus gd/U2 and gF/U2 for £ = ,01. From Figure l;, it is
possible to determine wave generation for wide ranges of wind speeds,
mean water depth, and fetch lengths, for the special case of an impermeable
flat bottom having a friction factor f = .01,

Figure 5, Constant Depth Graph, for unlimited fetch length and wind
duration presents the steady state relationships of gH/U‘, gT/u, g/U
H/L, gtnin/U, and Fpin/Utnin, as functions of gd/U2, for f = .Ol.

Values of the wave length L and the group velocity Cg, respectively,
were determined from Figures 3 and the following equations:

; z 2md
L=—§%— tanhLL (L)
L m
L 3 L
e |t TR *

L

' The minimum duration, t.;, wWas determined by graphical integration
from the following expression

v / : 1
dt = — dx
= é
/[ /0 Ce (é)

The relationships given in Figures 3, 4 and 5 apply only to the
geaeration of wind waves over an impermeable sea bottom of constant depth
for £ = 0.01. Similar relationships could ove developed for other friction
factors.

Not. only mav the frietion factor be different from f = 0.01 but the
bottom may not be impermeable, The following expressions for the recduction
' in height of waves travelling over a permeable sea bottom of constant
depth (neglecting bottom friction and refraction) is obtained from reference

i
! (3) P
i
A x
H=zH exp—RL2X P (7)
s ™ v
where P = permeability coefficien'i:,ft2
6ls 7K 52 2 .-l (8)
¢p s —. . L wd sec ft
g dinn i

v = kirnematic viscosity £t2 sec~l

(14
[1]

base of natural logarithm.
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The other symbols are the same as in equation 1.

In case of percolation lcsses one could determine by the numerical
method of successive approximation, relationships for the generation of
wind waves over a permeable sea bottom. The combined effect of bottom
friction and percolation in a permezble sea bottom on the generation of
wind wzves can be handled in a similar manner.

Case II: Generation of Wind Waves Over a Bottom of Constant Slope.

The special case of wind generated waves over a shallow bottom of con-
stant depth occurs not so frequently as the case of generation over a
bottom of variable depth. This is particulsrly true for wind waves gener-
ated in the Gulf of Mexico. The wind wavesmay be ger.erated in deep
water in the Gulf of Mexico, but as the storm waves move upslope shore-
ward urder the continued influence of the wind further generation must
take into account the effect of bottom friction and percolation in the
permeable sea bottom, the factors of which retard the rate of generation.
In fact in the more shallow regions the rate of generation mey be less
than the rate of dissipation of wave energy and the actual wave heights
and periods will decrease shoreward of deep water even though the original
wind speed and direction remain constant.

This section of the report deals with the generation of wind waves
over a bottom of constant slope, but the method is easily extended to a
bottom of variable slope such as exists in the Gulf of Mexico. (See Case
I1I).

In the place of equation 1 (for a bottom of constant depth) the
following equation for an impermeable bottom of constant slope is obtained
from reference (3)

-1
H - H, Ke “‘° f/ Be8 (d/T2) ~1|—| (9)

=, I

where H = significatt wave height, in feet at a relative depth of d/Te,

initial deep water significant wave height, feet,

2o}
[«]
1]

bottom slope (change of depth per unit distance in the direction
of wave travel).

3
1}

The other factors are the same as in equation 1. Equation 9 can be
used together with Figure 1 to evaluate wave heights and periods over
a bottom of constant slope by a similar process of successive approximstions
as was employed for a bottom of constant depth.

For reasons which beccme apparent in a later section of this report,
equation 9 was used in the following form




d/T? -

mT2 Joo

where Ho' is defined as the equivalent deep water significant wave height;
that is the wave height which would exist in deep water if the wave
hejght, H, in shallow water were unshoaled directly to deep water un-

affected by refraction or energy loss. The actual wave height can then
he determined from

H = Ho' Kg (11)

where Ko is equal to the shoaling factor and can be obtained from
Tebles by Wiegel (7) under the column H/Ho'.

0 1 were used to evaluate Ho' over a bottom
of constant slope for number of initial conditions., The integral in-
volved in equation 9 has been evaluated by graphical i:itegration and is
presented in Figure 2, as

/72
/72 & B 3(d/T%) versus d/12 .

v

oS

A sumnary of the number of different sets of Computations of Wind
Wave Generation Over a Bottom of Constant Slope is presented below (the
numbers in the table indicate the number of individual initisl deep water
fetch lengths selected)

WIND SPEED IN MPH

m £ £/m BO 10 20
1/5280 001 5.28 u b 0
10/5280 .01 5.28 3 S 3
50/5280 .05 5.28 3 3 o]
5/5280 .01 10.6 3 3 3
10/5280 .02 10.6 3 3 0
25/5280 .08 10.6 2 2 8

1/5280 0 52.8
5/5280 .05 52.8
25/5280 .25 52.8

W W W
Lkt =
OOoOw

m = bottom slope = rise per horizontal distance.
f = bottom friction factor.

Figures6 and 7 are examples cf the generation of wind waves over

.a bottom of constant slope for wind speeds of 4O and 80 miles per hour

respectively and f/m = 10.6 for various values of f and m. The dashed
lines are the actual generation 1ines, where the energy is being lost by

b

o g, S(d/T2) + 1 (10)
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Nottoam friection atv a more rapid rate than is being gained by wind stress.
Isolines of constant depth 2t end of fetch (solid lines of Figure 7) were
constructed through the generation lines. For any particular.wind speea
and various combinations of f and m for f/m = constant, it was found
thsat the s-me set of isolines applied very nearly. The maximum deviations
of the lines of constant depth at the end of the fetch for the extreme
ranges of f and m used in the above computations were less than 1 per-
cent for f/m s 5.28, less than 3 percent for f/= = 10.6 and less than 7
peccent for £/m = 52.8,

From the above fairly-good agreement it was concluded that f/m would
be an excellent parameter for predicting wave heights over a bottom of

——

constant slope. y
2 7
Figure 8 presents the maximum values of gHe' /U™ versus ng/U2 for '
the three conditions of f/m = 5.28, 10.6 and 52.8. It might be noted
that the condition of f/m = 52.8 corresponds very nearly to the condition
of £ ¢ 0,01 for a flat bottom as given in Figure 3. That is for f - 0,01 :
and £f/m = 52.8, m is equal to 1 foot rise per mile horizontal distance, :
which is very nearly a flat bottom.
gd
Figures $, 10 and 11 are dimensionless plots of gHo'/U2 versus —Eg___ |
with gF/U2 as a parameter for f/m = 5.28, 10.6 and 52.8 respectiveiy. :
Unlike Figure 2 no relationships are presented for the wave period. :
The reason being that the equivalent deep water significant wave period |
T*' can be determined directly from gT{U of Figure 1 for corresponding |
S ety : !
values of S- = « (T* = T) is the same resulting wave period |
obtained by the numerical method of computations for corresponding values |
of (Ho' = Hp)e The above statement is more clearly understood by the '
following example:
Drample L
Given: F = 300 miles
U = 50 mph = 73.5 ft/sec
m = 10 £t/ mile
f 5 0,02 E
dp:: 50 feet
Solution:
f/m =10.6
P02 322 x 5280 x 300, 950
2
(73.2)
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-5
EEE - 32.2 x 50 . 0,29
2 (73.2)°
gy’ _ 0.1 Figure 10
u2
Hy' = 19 feet
at B _ 8% . 0.11,6F - 2000 Figure 1
y2 U e
] {
at BF-2000, B - 4.0 -« BT rigurel
7z 5 : ,

T' = 9.1 seconds equivalent deep water significant wave period

d/Lo = 50 = 5.12 (9.1)2 = 0.118

kg = H/Hy' = 0.921 (Tables by Wwiegel)
H =19 x 0.921 = 17.5 feet, significant wave height at t
dp = 50 feet for F = 300 miles, U = 50 mph. and f/m = 10.6 I

The relationships presented in Figures 6 through 11 apply only to
an impermeable bottom of constant slope. 1In cases of a permeable boltom
one must consider percolation loss. The following equation for percolation
loss over a permeablc Lottom of constant slope is obtained from reference (3).

B
H « Hy Kg [ianh ZT"ﬂ] (12)
L © 4

where

B s M_ . The symbols are the same as given in
uml

equations 7 and 9.

Case III: General - Generaticn of ¥ind Waves Over a Variable Bottom
Slope.

The numerical method of computing the generation ¢f wind waves in
snallow water, taking bottom friction, percolation andrefraction into account,
can be extended to a variable bottom slope, such as exists in the Gulf of
Mexico. This is done by using en average bottom slope for each increment
of Ax over for which the computaticns are made. The method can be applied
to downslope (m<0) as well as upslope (m>0). In case of a flat bottom
(m = 0), the relationships for a bottom of constant depth must be used.

20
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Figure 12 is a typical bottom profile in the Gulf of lexico off the
South Texas coast. Using a bottom friction factorcd f =2 C.C2 2and a
fetch length of 30C miles to any depth dp , and assuming no percolation
loss and no refraction, numerical computations were made for wind waves
generatzd upslope over the bcttom profile of Figure 12.

Figure 13 represents the results of these computations, which are :
given as l,'/H, versus mean water depth, dp, at end of F = 300 miles.
Ho' is the equivalent deep water wave height based on numerical computa-
tions, taking bottom friction into account. H, is the actual deep water
significant wave height “hat one would obtain by using Figure 1. A quick
glance at Figure 13 clearly shows why the deep water wave forecasting | Y
relationships can not be used to predict waves on the continentsl shelf Lo
of the Gulf of Mexico. The square of the ratio of Hy'/Hpo is indicative
of the error in wave energy that one would cbtain by using the dzep water M
wave forecasting relationships, without considering bottom friction losses.

Figure 13 is only one example of the Gencral Case of wind generated &
waves over a variable sloping bottom. Each location and each direction
for each location is a different prcblem. Percolation losses as well
as refraction effects should be investigated for each case., This,
of course, requires detailed knowledge of the bottom configuration and
803l conditions.

Summary and Conclusions. The method presented in this report is a
first attempt in developing a set (or sets) of relationships which govern
the generation of wind waves in shallow water, taking bottom friction and
percolation into account.

-3 S~

The deep water wave forecasting relationships do not apply in shallow
water and should not be used to predict wind waves in shallow water regions,

such as the continental shelf of the Gulf of Mexico., Some estimate should

il

be made of the bottom friction factrr and permeability coefficient and
computations ot wave nelghts and periods should include €ncrgy lcss due te
bottom friction and percolation.

~ Blnias -

14 415 nzoessary W obtaln @npirical daba wi wind gencrated waves in
shallow water for different bottom conditions. This would lead to a more
accurate seiection of the bottom friction factor to be used in the com-

putations of wind generated waves in shallow water,
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